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Longitudinal nonlinear waves in a solid rod with the dispersion caused by the fi- 
niteness of the rod’s diameter taken into account, are investigated. The process 
of nonlinear distortion of the wave, which includes the formation of the station- 

ary nonlinear impulses called solitons, is studied, and their decay with the real 

losses within the rod taken into account, is investigated. The simplest quanti- 
tative estimates are made. It is shown that similar processes are possible for lo- 
ngitudinal waves in plates. A possibility is mentioned of independent estimation 

of the third order elastic constants using the nonlinear distortions of longitudinal 

waves in rods and plates. 

In the course of considering the elastic waves of finite amplitude in rods, it 
is found that the finite size of the rod diameter introduces a significant disper- 
sion of the type associated with the possibility of existence of nonlinear, spher- 

ical waves including the stationary solitary impulses, i. e. solitons, the fact no- 

ted by the authors on earlier occasion (9. Transverse magnetic waves exhibit 
analogous dispersion [l], however in this case the nonlinearity is cubic in amp- 
litude and can only be detected in particular cases [2]. The dispersion connect- 

ed with the fact that the period of the crystal lattice is finite [3] will have an 

effect only at such high frequencies that the length of free path of the phonon 

does not exceed the wavelength, It should also be noted that the concen~ation 
of the wave energy in a small diameter rod makes it possible to increase signi- 

ficantly the nonlinear effects, while the waveguide properties of the rod make 
it possible to observe the accumulation of the nonlinear effects at a considera- 
ble distance without any influence of the diffraction spread. 

1. Let us consider longitudinal elastic waves in a rod of finite diameter ‘%z. 
~ongi~~nal waves present most interest here, For the transverse (bending and torsional) 

waves the nonlinear effects are much weaker in the case of an isotropic material, and 
begin to be noticeable only in the third order of magnitude. Moreover, the bending wa- 
ves ace strongly dispersed, and this prevents the nonlinear distorsion. We shall consider 
stresses under which deformations still remain elastic, and use the generally accepted 
expansion of the internal energy in terms of the invariants of the deformation tensor to 
*) Ostrovskii, L. A. and &tin, A. M. , On acoustic solitons in solid rods and plates. Mat- 
erials of the VIII-th All Union Acoustic Conference, M., 1973. 
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within the third order inclusive [4] 

Kere IQ are the components of the displacement vector, RR are the components of 
ihi d;formation tensor, CL denotes the shear modulus, K is the bulk modulus, while 

9 and c are the third order Landau moduli, 
We assume that the natural wavelength of the waves in question is much larger than 

the transverse dimension of the rod. We can therefore make the usual assumption that 

the radial displacement is proportional to the radial coordinate r and to the axial 
deformation, i. e. 

(1.2) 

where 0 is the Poisson’s ratio and the n: -axis is directed along the rod. Integrating 

the energy density in the transverse section of the rod and taking into account (1.2), we 
obtain the following one-dimensional Lagrangian: 

Cl. 3) 

p = 3E’ + 2.4 (1 - Za”) + 6B (1-- 20 + 2a2 - 463) -t 

2c (1 - 243 

Here p is density, s is the transverse section of the rod, 6 is the Young’s mod- 

ulus, V is the polar radius of inertia (for a cylindrical rod Y == d/v2 and 

p is the nonlinearity parameter. For most solids B ( 0 c51. 
The Lagrange equation corresponding to (1.3) has the form 

(1.4) 

(3 z E/p, L = cw) 

By virtue of the assumptions made, the two last terms in (1.43 describing the nonlinear- 

ity and dispersion effects, are small (although essential in what follows). The above 
equation was studied more than once for the case p = 0 (linear case) (see e. g. 

[Sl). When L = 0 (absence of dispersion), the equation assumes the same form 

as that for a longitudinal wave in free space [5, ‘71, however in the present case the wave 
velocity and the nonlinearity parameter p are both functions of the parameters of the 

material. 
To consider a nonlinear wave p~pagating in the direction 2, we pass to the dim- 

ensionless coordinates (see also [‘If) 

.G-_+, 
r - et 

E---f;-_, 
B &i 

v=-w* 
(1.5) 
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Since the dispersion and the non~~earit~ are both small, the dependence of % on z 
should be slow compared with the dependence on E. Then, susbsti~~ng (1.5) into 
(1,4), neglecting terms of the order of d=/dz= and integrating with respect 

to L we obtain 
l1.6) 

A more rigorous method of deriving such equations can be found e. g& in 181. 
It follows that the long~~dinal velocity of the rod particles satisfies the Korteweg- 

de vries e~~~on, Its so~tio~ were studied repeatedly in connection with various phy- 
sical processes {see e. g. [9]). Let us discuss briefly the properties of the elastic waves 
in the rod within this approximation. 

2, First we consider a sufficiently strong, low frequency wave in the rod. In 
this case nonlinearity prevails over dispersion (~,,~a/12 > $, where ?,?a 
and I are the amplitude and characteristic wavelength in terms of the variables (1. 
5)). Then the dispersion term can be neglected at the initial stage and the solution co- 
rresponds to a simple wave. 

where F is an arbitrary function. Deformation of such a wave leads to a steepening 
of its front and hence, formally, to loss of u~quen~ (~ve~i~n). If e.g. at z = 0 
the variable u represents a harmonic oscillation of the form 21 -_ P)O sin a_+ or 
an impulse in the form of a half period of this sine wave, i. e. 2f = Q sin o>t 
for 0 C t < s%/O and 7? zzz 0 outside this interval, the_n 
the wave becomes inverted at the distance Ic+ = C/O’Qa* When 
2 > x* a segment of large curvature appears within the wave, Within this segment 
dispersion can no longer be neglected and Eq. (1.6) must be used in full. Since there 
are no losses, we find that when x>x* * oscillations will always appear 
at the wavefront and a wave of finite duration will split into several isolated impulses 
(soliton) af the form 

us &L&&Zf k-- ?% 

t7 ) 

where the excess (relative to the linear velocity Cl wave velocity w and the sp- 
atial width of the soliton A {relative to the fevel of 0.8 A) are connected with the 
amplitude by the relations _- 

A- 3w, A = v’ 121A 

For example, for a cylindrical steel rod the length of the soliton in the dimensional var- 
iables is approximately equal to 0,3&a, where M = c-‘d&/dt is the 
acoustic Mach number. 

The soliton reaches its m~imum Iength at the largest possible value of the eIastic 
stress for which the Hooke’s Iaw still holds. For steel the onset of plastcity corresponds 
to M zz 5 s 10-’ [6 f , and the soliton length is appr~mately seven times 
the diameter of the rod (i e, the assumption that the transverse Ernest of the rod is 
smalI compared with the wavelength holds practically always for the solitons). 
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The distortions in the elastic impulse and its decomposition into solitons are shown 
schematically in Fig. 1. The solid lines depict the dependence v = 2~ (E) for 

Fig. 1 
5 = 0 (a), II: = X, (6) and II: > x* (6). We note that the amplitude 

of the first soliton exceeds in magnitude the initial amplitude by about two times, and 

this may contribute towards the appearance of irreversible deformations within the mat- 

erial, A sine wave of sufficient intensity will also decompose into solitons over each pe- 
riod. However, at some distance it will regain its sinusoidal form and the process will 

be repeated periodically [lo]. 
Until now we have always discussed the quantity u, which is proportional to the 

longitudinal velocity of the particles of the medium. Sometimes the longitudinal de- 
formation represents a more characteristic quantity 

u, = - 2pc3#F .p vdt 

In particular, the velocity soliton has the corresponding displacement wave given in the 

form of a jump 

It follows that the amplitude of the velocity solitons is proportional to the square of max- 
imum displacement, and the process of decomposition into solitons corresponds to the 

appearance of diverging “steps” in the displacement profile (see the dashed lines in Fig. 

1). On the other hand, the transverse displacement of the lateral surface of the rod var- 
ies with time according to (1.2), in the same manner as the longitudinal velocity. 

3. Xn order to assess the feasibility of observing the nonlinear waves, we must 
consider the influence of the losses witbin the rod. To do this, we must add to the left- 
hand side of (1.6) a corresponding linear operator P (v), the form of which depends on 
the mechanism of dissipation. If the linear theory supplies us with the frequency depend- 
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ence of the damping decrement, i. e. of the imaginary part of the wave number k” (~3) 

for harmonic waves, then the operator P (8) can be found from the inverse Fourier tra- 
nsformation. For example, when the losses are determined bv the viscosity or heat con- 

ductivity in the rod, i. e. Ic” = qe~s, we obtain P (v) = q~~L-Wv/df~ (the 

value of r] for longitudinal waves in a rod can be obtained from e. g. [4]). Equation 

(1.6) has, in this case, the form of the Burgers-Korteweg-de Vries equation which has 
been recently inv~tigated more than once. In particular, the specific features of the 

soliton damping when the losses are small were expounded in(11,12]. The damping of 

shock waves in elastic media in the absence of dispersion was studied within the frame- 

work of the burgers equation in [7]. 
Usually the damping in a solid has a different character. Experiments carried out 

for various media including metals [13] indicate that in the linear case the wave harm- 
onics dampen within the rod as exp (-&X/Z), where k is the wave num- 

ber and 8 is the loss coefficient which is constant. The above law holds for frequenci- 
es at which the scattering of the wave on separate crystals within the structure of the 

material has still no effect. For metals these frequencies extend to the value of at least 

several megahertz. 

It can be shown that the presence of such dissipation is equivalent to the appearance 

in (1.6) of a term of the type 

where the integral is taken in the sense of its principal value. It is interesting to note 

that Eq. (1.6) with the term (3.1) also describes the propagation of nonlinear ion-ac- 

oustic waves in a plasma with Landau damping [14, 151. 

Let us present some results which are essential for the elastic waves in question, 
Smooth perturbations for which the dispersion term in (1.6) can be neglected, become 

distorted with the steepening of the profile, to resemble a ” quasisimple” wave. The di- 

ssipation however reduces the distortion and no wave inversion takes place when the am- 

plitude is small [16]. For a sine-type innut nerturbations the inversion begins when 

M > 1 0.08pc%/3-‘~ 
Thus the wave amplitude must exceed a certain (frequency independent)thre.shold vsl- 
ue. For example, for steel (8 z 2. 10w4) 
3*10-7. 

this value corresponds to h! ‘2 

At large ampli~des the dispersion begins to take effect at the steep part of 
the wave, Oscillations begin to appear within the wave and, as before, it decomposes 
into solitons. We can easily establish the law of damping of a single soliton, assuming 
that it retains a quasi-stationary form. The method of obtaining a solution can be redu- 

ced in this case (see [171) to the following: integrating (1.6) with respect to $ from 
- 00 to +m we arrilre at an equation for A the integral of which has the form 

(3.2) 
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The formula (3.2) holds when the dissipation is sufficiently small (more accurately, 

when e/2% < g f On a sufficiently large interval the amplitude of the soliton ceases 
to depend on its initial amplitude (A- z-“) . As a result, the amplitudes of di- 
fferent solitons damping towards a similar value. 

We consider, as an example, the propagation of an ultrasonic wave in a 1 mm. di- 
am. steel wire (a problem with a definite practical interest). For a wave of rOOklIz 

frequency and a velocity amplitude of 50 cm/see. (power of the order of 5W), the in- 
version distance x* is about 8 m. when x ..’ ZO m several solitons appear on each 
wave period, the largest soliton with the amplitude of about 100 cm/set. and length 

of about 1 cm. Further, at a distance of about 55 m. the waveform reverts to the sinu- 

soidal one, The process can be easily observed since the damping of such waves through 
dissipation begins to be apparent only at the distances of order of 100 m. (radiation dis- 

sipation into air is also small). 

Similar effects can also be realized by using finite size rods (resonators), with the 
wave traversing it many times. In order to accumulate the nonlinear effects, the reso- 

nator must have rigid reflecting boundaries, or be shaped into a ring. We note that sig- 
nificant nonlinear effects (parametric generation and spectrum transformation) have al- 
ready been observed experimentally in ring resonators [18]. 

Analogous effects are possible in thin plates where the longitudinal waves undergo 

the same type of dispersion as those in rods, For plates we can use Eq. (1.4) with the 

coefficients 

where b denotes the plate thickness. It must be noted that even the simplest nonlin- 
ear effects (e.g. generation of the second harmonic) for longi~dinal waves in extend- 
ed space, rods and plates are determined, respectively, by three different combinations 

of three third order constants characterizing the solid, This apparently offers the possi- 

bility of measuring each of these constants separately with the help of nonlinear meth- 
ods which yielded, in the past, very accurately but only one of these combinations [5], 

the particular combination corresponding to a plane wave in free space. 
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